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Abstract

For some, the object of automated reasoning is the design and implementation
of a program that offers sufficient power to enable one to contribute new and sig-
nificant results to mathematics and to logic, as well as elsewhere. One measure of
success rests with the number and quality of the results obtained with the assis-
tance of the program in focus. A less obvious measure (heavily in focus here) rests
with the ability of a novice, in the domain under investigation, to make significant
contributions to one or more fields of science by relying heavily on a given reasoning
program. For example, if one who is totally unfamiliar with the area of study but
skilled in automated reasoning can discover with an automated reasoning program
impressive proofs, previously unknown axiom dependencies, and far more, then the
field of automated reasoning has indeed arrived. This article details such—how one
novice, with much experience with W. McCune’s program OTTER but no knowl-
edge of the domains under investigation, obtained startling results in the study of
areas of logic that include the BCSK logic and various extensions of that logic.
Among those results was the discovery of a variety weaker than has been studied
from what we know, a variety that appears to merit serious study, as, for example,
does the study of semigroups when compared with that of the study of groups. A
quite different result concerns the discovery of a most unexpected dependency in
two extensions of the BCSK logic.

1 Setting the Stage

When a researcher, who is a master of some field, uses an automated reasoning program
and finds a proof of a significant theorem in said field, applause is more than appropriate.
That success contributes to the mystique of automated reasoning, providing yet one
more bit of evidence that substantial progress has occurred. Evidence of this type exists
that includes studies of K. Kunen [Kun92], D. Phillips [Phi], and J. Belinfante [Bel01].
An expert, if the program in use provides the appropriate means, can give advice,
make enlightened conjectures, and otherwise restrict and direct the program’s attack
in a manner that sharply increases the likelihood of success. For example, through
the use of R. Veroff’s hints strategy [Ver96] or with the resonance strategy [Wos95],
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one can guide the program toward or away from paths of reasoning. In addition, the
researcher can restrict the program’s attack by instructing it to avoid certain lemmas
and certain types of term (through the use of demodulation) and, most effective, block
the program (with the set of support strategy [WRC65]) from applying inference rules to
sets of hypotheses whose consideration could bury the program in irrelevant conclusions.
Sometimes a paper results, stating clearly that automated reasoning played an important
role, perhaps a vital role. Even better is the case when the paper is published in a journal
devoted to mathematics or to logic rather than to automated reasoning.

In contrast, one might consider the case in which a novice, an amateur, in the field
of study in focus makes important discoveries by relying on a reasoning program. (By a
novice is meant one who knows nothing of the area under investigation, but one who may
know much about automated reasoning.) If the discoveries include impressive proofs,
previously unknown axiom dependencies, and far more, a landmark has been reached,
one that predicts greatness for the future of automated reasoning. This article offers
a story of such discoveries, a story of a novice studying the BCSK logic, as well as
extensions of that logic, with absolutely no knowledge of the fields under study.

At this point, we briefly provide some of the underlying formalism. Recall from
[BP94] that the fixedpoint discriminator on a set A is the function f : A3 → A defined
for all a, b, c in A by

f(a, b, c) = c if a = b
1 otherwise

for some element 1 ∈ A. The element 1 is called the discriminating element. The
fixedpoint discriminator arises naturally in algebraic logic as a generalization of the
ternary discriminator; see, for instance, [BP94].

The generic fixedpoint discriminator variety, in symbols FPD1, is the variety gen-
erated by the class of all algebras 〈A; f, 1〉 of type 〈3, 0〉, where f is the fixedpoint
discriminator on A and 1 is a nullary operation, the range of which is the discriminating
element of f . The 1-assertional logic of FPD1, in symbols S(FPD1, 1), is the conse-
quence relation from sets of terms to terms determined by the equivalence Γ|−S(FPD1,1)φ
if and only if ψ = 1 : ψ ∈ Γ |=FPD1 φ. Since FPD1 is a variety |−S(FPD1,1) and is
both finitary and substitution invariant, and hence is a deductive system in the sense of
Blok and Pigozzi [BP99], our interest in BCSK logic stems from the observation, made
in [BSV], that it is formula equivalent to S(FPD1, 1).

The following nine axioms, for the BCSK logic, initiated the study, where the func-
tions i and j denote strong and weak implication, respectively.

P(i(x,i(y,x))). % A1
P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))). % A2
P(i(i(i(x,y),x),x)). % A3
P(i(x,j(y,x))). % A4
P(i(j(x,j(y,z)),j(j(x,y),j(x,z)))). % A5
P(i(j(x,j(y,z)),j(y,j(x,z)))). % A6
P(i(j(j(x,y),x),x)). % A7
P(i(j(i(x,y),y),j(i(y,x),x))). % A8
P(j(i(x,y),j(x,y))). % A9
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The nature of the contributions in focus here strongly suggests that automated reasoning
has indeed arrived.

Detailed is the adventure that began with a set of axioms and target theorems
in logic, a collaboration of one expert in that logic with another expert in automated
reasoning—but truly a novice in the logic—and some hard-to-find proofs mostly supplied
by Veroff using his powerful sketches [Ver01] approach. (More generally, an individual
knowing essentially nothing about a field to be studied—but having much knowledge
and experience with a reasoning program in hand—can make significant contributions
to that field. Further, if the corresponding logical formulation is available, one who is a
novice in logic or mathematics can fearlessly seek one valuable proof after another with
the expectation of some or much success by relying on a program that offers a variety
of strategy. At the other end of the spectrum, one who possesses substantial knowledge
of the field to be studied but knows little of automated reasoning can also succeed.) A
novice in the field under study has the advantage of not being trapped by knowledge of
how one typically proceeds (perhaps, implicitly, must proceed) and can, therefore, follow
paths not previously explored. The automated reasoning program has this advantage,
for it knows nothing of any field and lacks bias or orientation—such a program is indeed
a novice. For example, one can instruct the program to totally avoid some type of term
or some lemma that the literature suggests must be relied upon. Such instruction can
lead to most satisfying and wondrous discoveries. Well demonstrated here is the current
state of automated reasoning in that, eventually, (as one learns here) startling results
were obtained.

Our objective was to find “short” proofs, and seeking that objective led to marvelous
and unexpected discoveries, which is the basis of the story to unfold. Not surprising,
especially to the person familiar with the new book Automated Reasoning and the Dis-
covery of Missing and Elegant Proofs [WP03] and the strategies and methodologies it
offers, a number of short proofs were in fact completed. More pertinent to this arti-
cle, unknown axiom dependencies were found, a new concept was formulated—proof
dependence—and a variety was unearthed that may merit serious study. In particular,
by way of a foretaste, of the nine axioms that prompted the original study, two were
proved to be dependent, A3 and A6. These two axioms as well as A7 were shown to be
totally avoidable (even as deduced formulas) for completion of the proofs being sought,
which revealed a promising weaker variety to consider. This variety is axiomatized with
axioms 1, 2, 4, 5, 8, and 9.

When one is introduced to some field of mathematics or logic, one is typically pre-
sented with a set of axioms from which the theorems are deducible. And that is how
this story begins, with nine axioms of the BCSK logic. A glance at the set of axioms
(of the area in focus) often does not readily reveal which, if any, are dependent on the
remaining. For example, if one is introduced to group theory with the axiom set con-
sisting of associativity of product, the existence of a two-sided identity element e, and,
with respect to the identity, a two-sided inverse, one might not immediately see that
dependencies exist among the given five axioms. But, they are present. Indeed, the
axioms of right inverse and right identity are each dependent on the remaining three;
equally, those of left inverse and left identity are dependent.

The proofs of the cited dependencies are well within reach of various automated
reasoning programs or well within reach of the unaided researcher. With W. McCune’s
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program OTTER, one can simply negate the axiom to be proved dependent, place the
negation in the passive list, place the other axioms in the initial set of support list, and
seek (when the notation is equational) with the inference rule paramodulation a proof
by contradiction, which, at least for group theory, will be in hand almost at once.

Rather than the deducibility from the remaining axioms, the key focus for this article
about dependence is that, at least axiomatically, the dependent item is not needed (in
the input). However, a dependent axiom might still be required to complete one or more
proofs of interest, needed at the deduced level. Here, as one learns, we are concerned
with items that are not needed even at the deduced level, a topic that is featured as
we introduce the notion of proof dependent. For a foretaste of what is to come, we
note that the total avoidance of some thought-to-be indispensable lemma when seeking
to complete a proof of a theorem of substantial interest can be challenging. Because
of the nature of dependence and the importance of axioms, to totally avoid the use of
an independent axiom may be far more challenging and, if successful, may mark the
beginning of a study of a weaker variety (field), as in the case of the study of groups
versus semigroups. Further, when compared with avoiding the use of some lemma,
more interest may rest with the total avoidance of some axiom; after all, axioms are not
typically thought of as lemmas.

The axiom in focus need not be a dependent axiom. For example, we might begin
with a three-axiom system consisting of independent axioms and seek proofs in which
one of the three is selected to be avoided. If we find such proofs, for each of the
corresponding theorems, we say we have established proof dependence, because we have
shown the selected item to be unnecessary. (The term proof dependent is intended to
suggest to one that its establishment for a particular formula or equation depends on
finding an appropriate proof.) When the selected item is an independent axiom and
we are, nevertheless, able to prove one significant theorem after another without its
participation (at the deduced level)—proof dependence is present—then we might be
in the presence of a weaker theory that merits study. For a well-known situation, one
need only consider group theory and its weakening to that of the theory of semigroups,
where certain group-theory axioms are dropped. In this article, by offering proofs that
totally avoid the use of a key independent axiom (A7), we offer a theory (that might
merit study) weaker than the BCSK logic. For extensions of that logic, we found and
offer proofs in which A7 is totally avoided, as well as a proof of its dependence that was
indeed unexpected. These proofs provide powerful evidence that automated reasoning
has arrived and that one with little or no knowledge can find treasure.

A second example, relevant to proof dependency, nicely illustrates one of the limiting
points. Let us consider a logic in which condensed detachment is the only rule of
inference such that the logic is studied in terms of a single axiom A. Let F denote the
formula obtained by applying condensed detachment to two copies of A. Every proof
of length greater than or equal to 1 in this study must have as its first step F. In
other words for proofs of nonzero length, one cannot dispense with F. Therefore, F is
never proof dependent (because it is always needed), regardless of the theorem under
consideration when its proof requires at least one deduced step for its completion.

Hilbert himself might have been interested in proof dependence. Indeed, many of us
learned as students of the famous 1900 lecture by Hilbert in Paris, a talk in which he
offered twenty-three problems for study. As it turns out, a twenty-fourth problem exists,
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one he said in his notes that he did not have time to adequately formulate for the Paris
lecture. (For that find, thanks goes to R. Thiele [TW02] and his thorough examination
of Hilbert’s notebooks.) That problem focuses on finding simpler proofs. A proof can be
simplified in many ways, including shortening, removing a messy formula or equation,
or avoiding some type of term. Also, pertinent to this article, a proof can be simplified
by avoiding in all senses some axiom; if said axiom is independent, so much the better
and more intriguing. We have a 30-step proof for the dependence of the fifth of the
five $Lukasiewicz axioms for his infinite-valued sentential calculus that is simpler than
the original Meredith proof in various ways. For example, it is shorter, and, surprising
to many, it avoids the use of any double-negation terms, terms of the form n(n(t)) for
some term t. (The book citeWos2003b, offers the 30-step proof and many others of its
type and features in detail various refinement methodologies. The book also offers open
questions and challenges, in Chapter 7, that readers may find interesting.)

In the spirit of Hilbert’s twenty-fourth problem is finding a proof that relies on fewer
axioms than that in hand. If, for example, one has a proof P of a theorem T that relies
on a set of axioms that include dependent axioms, and if one removes the dependent
axioms to produce a set S of independent axioms, then there must exist a proof Q from
S of the theorem T . The proof Q is simpler than the proof P in an axiomatic sense.

Of course, the absence of a dependent axiom in a set of hypotheses says nothing
about its absence in a proof obtained from the so-called smaller (independent) axiom
set. In this article, offered is methodology for finding proofs in which the dependent
axioms not only are avoided as hypotheses but also are absent among the deduced steps
of the proof, are, therefore, proof dependent. The inference rule or rules being employed
are taken into account. This article details how such proof-dependent items were found
with substantial aid from OTTER. The method that is given is extended to finding
proof-dependent items even when the axiom in focus is in fact independent. When
one finds that an independent axiom is proof dependent for a number of interesting
theorems, then (as noted) the variety obtained by its omission may merit serious study.
Proofs that avoid reliance on independent axioms might indeed have been of interest to
Hilbert for they are simpler in an important way.

Finally, good fortune, occurring during the search (in the spirit of the new Hilbert
problem) for short proofs, takes center stage as the experiments are discussed that led
to the discovery of certain dependencies among the original nine axioms that in turn
provided the wellspring for the study reported here. Here the article offers proofs that
establish proof dependence for various axioms of the BCSK logic, as well as for some of
its extensions. These proofs support the position that a weaker logic, obtained by the
omission of the axiom A7, might offer unexpected power and interest.

2 A Wellspring for Ideas

The entire article came into being because of an attempt to find pleasing proofs for the
following three theses (theorems), each given in its negated form.

-P(i(i(A,B),j(A,B))) | $ANS(THESIS_1).
-P(j(i(A,B),i(j(B,C),j(A,C)))) | $ANS(THESIS_2).
-P(j(i(B,C),i(j(A,B),j(A,C)))) | $ANS(THESIS_3).
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The study was based on the nine axioms (for the BCSK logic that were given in Section
1) as hypotheses. (One might find interesting the fact that the first three axioms serve
well for a complete system for the implicational fragment of intuitionistic logic.) Rather
than seeking first proofs—three were in hand from Veroff—the object was to find shorter
proofs, perhaps far shorter. Because of the nature of the first thesis, namely, it plays
the role of a key lemma in a paper under consideration [BSV], the goal was to prove
it by itself. The other main goal was to find a short proof of the join of the other two
theses, 2 and 3.

Of the aspects of the approach to proof refinement with respect to length, two
were prominent. First, we used ancestor subsumption, which causes the program to
compare pairs of paths to a conclusion, preferring the shorter derivation. Second, we
used demodulation to block steps of a proof, one at a time, to prevent their participation.
(Demodulation is typically used for simplification and canonicalization.) By blocking
the use of some given step, the program is forced to seek other paths to a proof—and it
often is a most effective move to make when seeking shorter proofs.

3 Consequences of the Refinement Phase

As we made progress in finding ever shorter proofs, one of them was of particular note.
Specifically, it failed to rely on A3 as a hypotheses. In other words, we had a proof from
a smaller set of axioms, a set in which A3 was omitted.

The next move was to remove A3 from the axioms (by commenting it out in the
initial set of support list). Somewhat later, we had in hand an even shorter proof, one
with a most unexpected property. This proof relied on A3—as a deduced step. OTTER
thus had established A3 to be dependent on the remaining eight of the nine original
axioms. Now one sees why, near the close of Section 1, a reference was made to the
discovery by good fortune of axiom dependencies.

Because we had found a satisfying proof in which A3 was not relied upon as an
axiom, but was relied upon as a deduced step, we decided to seek a proof that totally
avoided its presence—and the concept of proof dependent was born. The approach
chosen, which succeeded, was to block, by demodulating unwanted new conclusions to
“junk”, the retention of A3 when and if it was deduced. OTTER later found a 14-step
proof (which we give) of the dependency of A3, a proof relying on but six of the nine
original axioms, omitting A3 (of course) but also omitting A6 and A7.

Stimulated by the discovery of a dependency within the original set of nine axioms,
we sought to find other dependencies, focusing on A6 perhaps because of its position
within the axiom set. In particular, A3 is the third of the given axioms concerned
exclusively with the function i, and A6 is the third of those concerned almost exclusively
with the function j. Again, our approach was to comment out A6 in the input, and
we found appropriate proofs. We thus knew that A6 was not needed, at the axiomatic
level, to find proofs of the three given theses. Eventually, we had a nice proof of the
first of the three theses in which neither A3 nor A6 was used as an axiom. In that proof
A3 was not present as a deduced step, but A6 was.

We paused before resuming the main journey to seek a nice proof of the dependence
of A6 on seven of the nine original axioms, with A3 not participating. OTTER found
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one, a proof of length 27 (not given here) relying (as was the case for A3) on but six of
the nine original axioms, omitting totally the use of A3, A6, and A7.

We therefore resumed the main journey, seeking a proof in which A6 was totally
avoided, again relying on demodulating unwanted formulas to junk. The various at-
tempts failed, which (in effect) brings us to the methodology that was promised for this
article.

To put all in perspective, a review is in order. OTTER had succeeded in completing
satisfying short proofs of the dependency of both A3 and A6 on the remaining seven
axioms of the nine that prompted the study. We had a proof in which A3 participated
in no way, A6 was not relied upon as an axiom, but A6 was present as a deduced step.
Further, all attempts at completing a proof in which A6 was totally absent and all of the
other given conditions were met had failed—with the numerous standard approaches we
take.

We were thus forced to depart from our usual practice, that of paying little or
no attention (in the vast majority of studies) to the actual proofs themselves. More
precisely, our typical approach does not call for a close examination of a completed
proof, in detail or as a whole. Instead, we rely on years of experimentation for a feel
for which options and which values, if assigned to parameters, are likely to enable the
program to complete a given assignment. In other words, we have found that the
reading of a proof usually sheds little or no light on how one might proceed to refine
it. Instead, such a reading can play a role in the formulation of new strategies and new
methodologies that apply to many areas.

The so-to-speak forced inspection of the proof in hand that was the focus of attention
showed that A6 was used as a parent for only one formula that followed its derivation.
In that none of the standard approaches had enabled OTTER to find the sought-after
proof, the obvious conjecture asserts that a number of steps greater than 1 might be
needed to obtain the child of A6, where the formula A6 was not allowed to participate.
Indeed, intuitively, removing one of the two parents of a deduced conclusion, especially
when the removed parent is itself a deduced conclusion late in a proof—in the case under
discussion, the 46th step in a 53-step proof—can cause havoc. Our choice was to invoke
the use of the command set(sos queue) to cause OTTER to conduct a breadth-first
search for a proof of the child of A6. We placed in the initial set of support (in addition
to the axioms A1, A2 A4, A5, A7, A8, and A9) the first 45 deduced steps of the proof in
hand up to but not including A6. The target, negated and placed in list(passive), was
the child of A6. (The approach we took is indeed reminiscent of the cramming strategy
[Wos03], a strategy that enables the program to force or cram formulas in the initial set
of support into the desired proof.) Just for total clarity, with almost certainty, additional
deduced steps would be needed. After a thorough level-saturation search through level
1, at level 2 the desired proof of the child of A6 was completed, a proof of length 2.

We pause briefly to note that the approach just given would have merited use even if
A6 had been the parent of more than one formula that followed its derivation. Iteration
would be the way to proceed. One would proceed as we did but now with the negation
of the first child of A6 placed in list(passive) with the goal of obtaining the needed
proof that culminates with the derivation of the first child and without allowing A6 to
participate in any manner. Then one would amend further the list(sos) with the new
proof steps (that led to the derivation of the first child of A6 without A6 participating),
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as well as proof steps of the original proof preceding the second child and not dependent
on A6, and used as target the second child, placing its negation in list(passive), now
with the goal of deriving the second child and with the given constraints. One would
proceed in this manner, gathering proof steps along the way, until the last child of A6
was proved. Of course, the method we are presenting is useful when the goal is to avoid
any unwanted formula or equation and replace its role by other formulas or equations,
whether establishing proof dependence is the intention or not.

We had the components that almost guaranteed we could complete a proof that
avoided the use of A3 and A6 as axioms and, more important in the context of proof
dependence, avoided the use of those two formulas even as deduced steps. To enable
OTTER to return the proof of interest, we placed in the initial set of support the original
nine axioms but with A3 and A6 commented out. In list(passive), we still placed the
negation of thesis 1 and, for monitoring purposes, the negations, respectively, of thesis 2
and thesis 3. In list(usable), we placed the two rules for condensed detachment, one for
the function i and one for the function j, and the negation of the join of theses 2 and
3. To ensure that both A3 and A6 would not participate in any proof, we included the
following.

list(demodulators).
(P(i(i(i(x,y),x),x)) = junk). % A3
(P(i(j(x,j(y,z)),j(y,j(x,z)))) = junk). % A6
(i(x,junk) = junk).
(i(junk,x) = junk).
(j(x,junk) = junk).
(j(junk,x) = junk).
(P(junk) = $T).
end_of_list.

The crucial move directed OTTER to the proof we expected it to find, a proof
quite like that which relied on both A6 as a deduced clause and exactly one of its
children. Throughout the experiments, we had relied upon the use of resonators to
direct the program’s search for one or more proofs. A resonator [Wos95] is a formula or
an equation that does not itself take on the value true or false. Instead, its functional
pattern is the key, where all variables within a resonator are treated as indistinguishable
from each other, just denoting that a variable occurs in the corresponding position, and
where the value assigned to a resonator reflects its conjecture importance (the smaller
the value, the higher the priority given to similar deduced items). For the resonators
intended to guide the program to the expected goal, we used the set that had led to the
proof relying on A6, and, to enable the program to find the newer proof (not depending
on A6) of the child of A6, we included the two resonators that corresponded to the proof
found with level saturation.

As expected, OTTER was successful, and we had established both A3 and A6 proof
dependent and, of course, not relying on either at the axiomatic level. We immediately
attempted to further prune the original nine with regard to axiom dependencies and,
more relevant to this article, seek proofs establishing additional proof dependence than
that in hand. We did not expect that A1, A2, A4, or A5 would extend what we had in
hand so far, in part because they appeared to be vital. However, A7 did look promising.
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Therefore, we began a study with A7 commented out, as well as A3 and A6 not accessible
as axioms or as deduced formulas.

The capture was quickly made: we had proofs in which neither A3 nor A6 nor A7
was present, as an axiom or as a deduced formula. We therefore turned to an attempt
to prove A7 dependent on but six of the nine axioms. The experiment failed. Z. Ernst
came to the rescue—or perhaps rescue is the wrong word in that we would have preferred
A7 to be dependent—finding the following three-element model (with Mace4; see the
Web www.mcs.anl.gov/AR/mace4) showing that A7 is in fact independent of the six.

-------- Model 1 at 0.01 seconds --------

a : 1

b : 2

i :
| 0 1 2

--+------
0 | 0 1 2
1 | 0 0 2
2 | 0 1 0

j :
| 0 1 2

--+------
0 | 0 1 2
1 | 0 0 2
2 | 0 0 0

P :
0 1 2

---------
1 0 0

-------- end of model --------

Nevertheless, we now had in hand an example of an extension of the original concept
of proof dependence in that we had considered an independent axiom. Specifically,
although A7 is in fact independent, we had in hand proofs establishing each of A3, A6,
and A7 to be proof dependent, with A3, A6, and A7 absent from the axiom system. We
were thus ready for a serious effort at proof refinement in the context of length, within
the given constraints, seeking “short” proofs of thesis 1, the join of theses 2 and 3, the
dependence of A3, and the dependence of A6.
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4 Pleasing Proofs

Our main effort in the context of proof refinement was aimed at proof shortening;
shorter proofs are usually more pleasing than longer. As noted earlier, of the various
aspects that can be brought to bear, two played the key role: ancestor subsumption
and demodulation (to block the retention of conclusions one classes as unwanted). In
particular, we took each proof in hand and instructed OTTER to block its steps one
at a time, forcing it to seek a somewhat different proof, occasionally a sharply different
proof. One might immediately conjecture that a direct attack on finding shorter proofs
is in order, some type of exhaustive search, for example. The task cannot be so subtle,
or can it?

Of course, one would prefer applying an algorithm that simply seeks and finds the
shortest proof that exists for any given theorem and given axiom set. Studies of more
than a decade prove (to me) that such an algorithm in many, many cases does not exist.
Further, an unexpected obstacle (illustrating the cited subtlety) exists when seeking a
proof shorter than that in hand. The following aphorism (found in some books and
papers) nicely captures the obstacle. “Shorter subproofs do not necessarily a shorter
total proof make.” For the curious, how can this aphorism hold? An example is in
order.

Let us consider a proof of, say, 20 steps in which the tenth step is proved by using
steps 6 through 9. In other words, the length of the subproof concluding with step 10
is five. Now let us assume that OTTER or some person finds a proof of 10 that relies
on 6a and 8a, a proof of length three. With ancestor subsumption in use, the program
will prefer this second derivation because its length is three rather than five. A program
or a person might then attempt to complete a proof relying on the three-step shorter
subproof, with the expectation that the total proof (of step 20) will clearly be shorter.
Such may not occur, for example, in the event that steps 6 through 9 play a vital role
in the twenty-step proof. If a proof is completed that uses the cited three steps (of the
shorter subproof), the resulting proof may have length at least 22—and far worse may
occur.

Our efforts were indeed rewarded, as seen with the following proofs.
The given proofs are the shortest, for their respective conclusions, we have been able

to complete. (For the curious, we note that the inference rule regarding the function i
can be dispensed with; it is a derived inference rule. Its inclusion enables the program
to find shorter proofs. In the presence of A1, A2, A4, A5, A8, and A9, OTTER finds
a two-step proof showing that the corresponding clause is dependent. With the cited
axiom system and the derived inference rule present, OTTER finds a 14-step proof
showing A3 to be dependent; when the derived inference rule is removed, the best proof
we have found has length 20.)

A 14-Step Proof of the Dependency of A3

----- Otter 3.3d, April 2004 -----
The process was started by wos on jaguar.mcs.anl.gov,
Thu May 27 10:43:03 2004
The command was "otter". The process ID is 31886.
----> UNIT CONFLICT at 0.02 sec ----> 150 [binary,149.1,17.1] $ANS(a3).
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Length of proof is 14. Level of proof is 10.

---------------- PROOF ----------------

6 [] -P(i(x,y)) | -P(x) | P(y).
7 [] -P(j(x,y)) | -P(x) | P(y).
9 [] P(i(x,i(y,x))).
10 [] P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))).
11 [] P(i(x,j(y,x))).
12 [] P(i(j(x,j(y,z)),j(j(x,y),j(x,z)))).
13 [] P(i(j(i(x,y),y),j(i(y,x),x))).
14 [] P(j(i(x,y),j(x,y))).
17 [] -P(i(i(i(a1,a2),a1),a1)) | $ANS(a3).
24 [hyper,6,9,9] P(i(x,i(y,i(z,y)))).
38 [hyper,6,10,10] P(i(i(i(x,i(y,z)),i(x,y)),i(i(x,i(y,z)),i(x,z)))).
40 [hyper,6,10,24] P(i(i(x,y),i(x,i(z,y)))).
41 [hyper,6,10,9] P(i(i(x,y),i(x,x))).
46 [hyper,7,14,40] P(j(i(x,y),i(x,i(z,y)))).
58 [hyper,6,38,41] P(i(i(x,i(x,y)),i(x,y))).
97 [hyper,7,14,58] P(j(i(x,i(x,y)),i(x,y))).
115 [hyper,6,13,97] P(j(i(i(x,y),x),x)).
120 [hyper,6,11,115] P(j(x,j(i(i(y,z),y),y))).
124 [hyper,6,12,120] P(j(j(x,i(i(y,z),y)),j(x,y))).
129 [hyper,7,124,46] P(j(i(i(i(x,y),z),y),i(x,y))).
138 [hyper,7,124,129] P(j(i(i(i(i(x,y),x),z),x),x)).
144 [hyper,6,13,138] P(j(i(x,i(i(i(x,y),x),z)),i(i(i(x,y),x),z))).
149 [hyper,7,144,9] P(i(i(i(x,y),x),x)).

5 Extending the Logic

At this point, one might ask about the power of the abbreviated axiom set consisting
of A1, A2, A4, A5, A8, and A9. For example, with A3 and A6 and A7 omitted, can we
prove significant theorems when the logic is extended by adjoining yet another axiom
of interest or by adjoining a set of axioms focusing on different functions? Obviously,
the omission of both A3 and A6 presents no problem at the axiomatic level in that
they have been proved dependent on the set consisting of A1, A2, A4, A5, A8, and A9.
However, as noted, A7 is independent of that set. Further, perhaps A3 or A6 or both
will be needed at the deduced level, and A7 will be needed at the axiomatic level or at
the deduced level.

With the following formula, A10, we have such an extended logic, BCSK+.

P(i(j(j(x,y),y),j(j(y,x),x))). % A10

An interesting theorem to prove is captured, in its negated form, with the following
clause; the formula to be proved is equivalent to A10, and the proof found by OTTER
avoids totally A3, A6, and A7.
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-P(i(j(A,B),i(A,B))) | $ANS(thm).

To complete proof of the equivalence, OTTER found an 18-step proof that deduces A10
from the following formula in clause notation, and, again, a proof completely free of
reliance on A3, A6, and A7.

P(i(j(x,y),i(x,y))).

An appropriate move to test the power of the abbreviated axiom system, now con-
sisting of seven axioms with the cited addition of A10, is to give OTTER an input file
whose initial set of support consists of the seven axioms. The demodulator list contains
equalities that, respectively, block the retention of A3, A6, and A7 if and when each is
deduced. After all, for example, A7 might now be dependent on the seven-axiom sys-
tem. From Veroff, we had in hand a 42-step proof of the theorem under consideration to
initiate the study, a proof that does depend on the three axioms we intended to avoid,
(at both the axiomatic and deduced levels). The original goal was to shorten that proof.
More pertinent from the viewpoint of this article, we sought to find a proof establishing
each of A3, A6, and A7 to be proof dependent simultaneously.

All went smoothly, with the discovery of a 23-step proof. In examining the proof, we
observed that the added axiom, A10, is used but once. This observation caused us to
ask about the independence of A7 in this extended logic. After all, perhaps the use of
the added axiom (A10) leads to a proof of the dependence of A7. Therefore, we turned
after a short time to studying this possible dependence. Is A7 independent or dependent
in the extended logic? The effort paid off: OTTER found a proof of dependence, the
following in which both A3 and A6 are totally absent.

A 24-Step Proof of the Dependence of A7

----- Otter 3.3g-work, Jan 2005 -----
The process was started by wos on jaguar.mcs.anl.gov,
Tue Mar 8 16:10:03 2005
The command was "otter". The process ID is 4337.
----> UNIT CONFLICT at 0.13 sec ----> 679 [binary,678.1,17.1] $ANS(a7).

Length of proof is 24. Level of proof is 11.

---------------- PROOF ----------------

1 [] -P(i(x,y)) | -P(x) | P(y).
2 [] -P(j(x,y)) | -P(x) | P(y).
5 [] P(i(x,i(y,x))).
6 [] P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))).
7 [] P(i(x,j(y,x))).
8 [] P(i(j(x,j(y,z)),j(j(x,y),j(x,z)))).
9 [] P(i(j(i(x,y),y),j(i(y,x),x))).
10 [] P(j(i(x,y),j(x,y))).
11 [] P(i(j(j(x,y),y),j(j(y,x),x))).
17 [] -P(i(j(j(a1,a2),a1),a1)) | $ANS(a7).
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57 [hyper,1,6,6] P(i(i(i(x,i(y,z)),i(x,y)),i(i(x,i(y,z)),i(x,z)))).
58 [hyper,1,5,6] P(i(x,i(i(y,i(z,u)),i(i(y,z),i(y,u))))).
59 [hyper,1,6,5] P(i(i(x,y),i(x,x))).
61 [hyper,1,5,7] P(i(x,i(y,j(z,y)))).
69 [hyper,2,10,5] P(j(x,i(y,x))).
80 [hyper,1,6,58] P(i(i(x,i(y,i(z,u))),i(x,i(i(y,z),i(y,u))))).
83 [hyper,1,57,59] P(i(i(x,i(x,y)),i(x,y))).
93 [hyper,1,7,69] P(j(x,j(y,i(z,y)))).
124 [hyper,1,80,5] P(i(i(x,y),i(i(z,x),i(z,y)))).
127 [hyper,2,10,83] P(j(i(x,i(x,y)),i(x,y))).
136 [hyper,1,8,93] P(j(j(x,y),j(x,i(z,y)))).
188 [hyper,1,6,124] P(i(i(i(x,y),i(z,x)),i(i(x,y),i(z,y)))).
198 [hyper,1,9,127] P(j(i(i(x,y),x),x)).
288 [hyper,1,188,61] P(i(i(j(x,y),z),i(y,z))).
344 [hyper,1,288,11] P(i(x,j(j(x,y),y))).
395 [hyper,2,10,344] P(j(x,j(j(x,y),y))).
398 [hyper,1,124,344] P(i(i(x,y),i(x,j(j(y,z),z)))).
550 [hyper,1,8,395] P(j(j(x,j(x,y)),j(x,y))).
564 [hyper,1,398,288] P(i(i(j(x,y),z),j(j(i(y,z),u),u))).
615 [hyper,1,11,550] P(j(j(j(x,y),x),x)).
618 [hyper,2,198,564] P(j(j(i(x,y),x),x)).
632 [hyper,2,136,615] P(j(j(j(x,y),x),i(z,x))).
650 [hyper,1,11,618] P(j(j(x,i(x,y)),i(x,y))).
678 [hyper,2,650,632] P(i(j(j(x,y),x),x)).

A second and more intriguing extension of the original logic, SBPC, was studied with
the goal of determining the need, at the deduced level, of A3, A6, and A7. For the study,
we began again with the now so-to-speak famous six axiom system, that consisting of
A1, A2, A4, A5, A8, and A9, and adjoined the following six axioms (expressed in clause
notation), where the function a denotes logical and and the function o denotes logical
or.

P(j(x,o(x,y))). % A11
P(i(y,o(x,y))). % A12
P(j(j(x,z),j(j(y,z),j(o(x,y),z)))). % A13
P(i(a(x,y),x)). % A14
P(j(a(x,y),y)). % A15
P(i(i(x,y),i(i(x,z),i(x,a(y,z))))). % A16

In this extended logic, we attempted to find proofs, preferably short ones, of the following
four theorems, each given in its negated form, and, as one might predict, we sought
proofs in which A3, A6, and A7 are totally absent.

-P(j(i(A,B),i(o(A,C),o(B,C)))) | $ANS(1).
-P(j(i(A,B),i(o(C,A),o(C,B)))) | $ANS(2).
-P(j(i(A,B),j(i(B,A),i(a(A,C),a(B,C))))) | $ANS(3).
-P(j(i(A,B),i(a(C,A),a(C,B)))) | $ANS(4).
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We began the study of the four theorems with proofs supplied by Veroff, obtained by
him using his powerful technique called sketches. Perhaps because of the goal of finding
appropriate proofs, four of them, establishing proof dependence for the three unwanted
axioms, we were unable to complete the studies until we relied on a 92-step proof that
deduced (without using A3 in any way) a (former) child of A3. In other words, the earlier
studies of proof dependence came into play, enabling us (and OTTER) to overcome an
obstacle. Success eventually was the result. OTTER returned a 53-step proof of the
first of the four theorems, a 64-step proof of the second, a 104-step proof of the third
and a 99-step proof of the fourth. Many experiments were required, as well as much use
of refinement methodology detailed in the book [WP03]. The last significant reductions
in proof length (of the proofs of the third and fourth theorems) were obtained by heavy
reliance on cramming. Briefly, OTTER was given proofs of steps near the end of the
proofs in hand and asked to (in effect) force their proof steps into (we hoped) shorter
proofs of the targets.

The discovery that A7 is dependent in the BCSK+ logic (obtained by adding A10
to the original nine axioms, then removing any use of A3 and A6) led us to consider the
possibility that that formula is dependent in this second extension of the BCSK logic.
Indeed, would it not be more than piquant to find that A7 is independent in the original
study and then find it dependent in two extensions of the logic? And, as the following
proof shows—the shortest so far discovered—that is exactly what was found.

A 35-Step Proof of the Dependence of A7 in a Second Extension

----- Otter 3.3g-work, Jan 2005 -----
The process was started by wos on theorem.mcs.anl.gov,
Sun Mar 20 12:31:56 2005
The command was "otter". The process ID is 20352.
----> UNIT CONFLICT at 0.09 sec ----> 904 [binary,903.1,24.1] $ANS(a7).

Length of proof is 35. Level of proof is 20.

---------------- PROOF ----------------

10 [] -P(i(x,y)) | -P(x) | P(y).
11 [] -P(j(x,y)) | -P(x) | P(y).
12 [] P(i(x,i(y,x))).
13 [] P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))).
14 [] P(i(x,j(y,x))).
15 [] P(i(j(x,j(y,z)),j(j(x,y),j(x,z)))).
16 [] P(i(j(i(x,y),y),j(i(y,x),x))).
17 [] P(j(i(x,y),j(x,y))).
18 [] P(j(x,o(x,y))).
19 [] P(i(y,o(x,y))).
20 [] P(j(j(x,z),j(j(y,z),j(o(x,y),z)))).
24 [] -P(i(j(j(a1,a2),a1),a1)) | $ANS(a7).
130 [hyper,10,13,13] P(i(i(i(x,i(y,z)),i(x,y)),i(i(x,i(y,z)),i(x,z)))).
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133 [hyper,10,12,14] P(i(x,i(y,j(z,y)))).
135 [hyper,10,12,15] P(i(x,i(j(y,j(z,u)),j(j(y,z),j(y,u))))).
138 [hyper,11,17,16] P(j(j(i(x,y),y),j(i(y,x),x))).
139 [hyper,11,17,15] P(j(j(x,j(y,z)),j(j(x,y),j(x,z)))).
140 [hyper,11,17,14] P(j(x,j(y,x))).
142 [hyper,11,17,12] P(j(x,i(y,x))).
180 [hyper,10,130,133] P(i(i(x,i(j(y,x),z)),i(x,z))).
197 [hyper,11,140,140] P(j(x,j(y,j(z,y)))).
244 [hyper,10,180,135] P(i(j(x,y),j(j(z,x),j(z,y)))).
285 [hyper,11,17,244] P(j(j(x,y),j(j(z,x),j(z,y)))).
290 [hyper,10,244,142] P(j(j(x,y),j(x,i(z,y)))).
298 [hyper,10,15,285] P(j(j(j(x,y),j(z,x)),j(j(x,y),j(z,y)))).
347 [hyper,11,298,197] P(j(j(j(x,y),z),j(y,z))).
362 [hyper,11,285,347] P(j(j(x,j(j(y,z),u)),j(x,j(z,u)))).
371 [hyper,11,347,138] P(j(x,j(i(x,y),y))).
416 [hyper,11,362,139] P(j(j(x,j(y,z)),j(y,j(x,z)))).
449 [hyper,11,285,371] P(j(j(x,y),j(x,j(i(y,z),z)))).
488 [hyper,11,416,416] P(j(x,j(j(y,j(x,z)),j(y,z)))).
506 [hyper,11,416,138] P(j(i(x,y),j(j(i(y,x),x),y))).
559 [hyper,11,449,18] P(j(x,j(i(o(x,y),z),z))).
584 [hyper,11,139,488] P(j(j(x,j(y,j(x,z))),j(x,j(y,z)))).
603 [hyper,11,506,19] P(j(j(i(o(x,y),y),y),o(x,y))).
604 [hyper,11,506,14] P(j(j(i(j(x,y),y),y),j(x,y))).
657 [hyper,11,584,559] P(j(x,j(i(o(x,y),j(x,z)),z))).
681 [hyper,11,416,657] P(j(i(o(x,y),j(x,z)),j(x,z))).
698 [hyper,11,603,681] P(o(x,j(x,y))).
709 [hyper,11,488,698] P(j(j(x,j(o(y,j(y,z)),u)),j(x,u))).
727 [hyper,11,709,140] P(j(x,x)).
738 [hyper,11,20,727] P(j(j(x,y),j(o(y,x),y))).
767 [hyper,11,709,738] P(j(j(j(x,y),x),x)).
814 [hyper,11,285,767] P(j(j(x,j(j(y,z),y)),j(x,y))).
845 [hyper,11,814,604] P(j(j(i(j(j(x,y),x),x),x),x)).
851 [hyper,11,814,290] P(j(j(j(i(x,y),z),y),i(x,y))).
903 [hyper,11,851,845] P(i(j(j(x,y),x),x)).

For the curious, the first study yielded a 39-step proof, a proof that the usual methods
were unable to improve upon. However, with a most unsophisticated form of cramming,
the given 35-step proof was found. In particular, rather than relying on a subproof
of one of the late steps, OTTER was merely given the first 34 steps of the 39-step
proof and told to apply level saturation. In other words, no attention was paid to the
possible presence of steps among the thirty-four that were not used in the proof of the
thirty-fourth step.
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6 Summary

In this article, we have extended the notion of axiom dependence to one of proof de-
pendence. Briefly, a formula or equation is proof dependent if it can be dispensed with,
even as a deduced item; in other words there exists at least one proof that shows the
item to be totally unnecessary. The new term, proof dependent, was chosen because
of the nature of a dependent axiom, namely, one that is unnecessary at the so-called
input level (from the viewpoint of automated reasoning). We have given methodology
for finding an appropriate proof, one that completely avoids the use of some selected
item, even when the item is in fact an independent axiom.

We have included various proofs discovered with indispensable aid from McCune’s
OTTER, the shortest proofs that we could discover, given the conditions to be satisfied.
Such conditions included total avoidance of one or more items. Among our successes
was the discovery of various axiom dependencies. In two of the three logics we studied,
both extensions of the BCSK logic, we found (most unexpectedly) that a key axiom,
A7, is dependent, although it is independent among the axioms for BCSK.
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